The Reed-Frost Model and its Application to Real
Life
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1 Preface

The Reed-Frost model is one of the earliest models used to study the behaviour
of infectious diseases. It was created by Lowell Reed and Wade Hampton
Frost during the 1920s. Nowadays, the model is used more as a template for
more complex models. However, it is still worth looking at because it gives
a good introduction to stochastic epidemiology theory.

Epidemiological models are used in modern life to provide predictions
and data for possible outbreaks of infections. This information can be useful
for governments and public health organisations to implement measures to
combat current epidemics and to make plans for possible future outbreaks.
Whilst epidemiology covers a wide range of infectious diseases, the Reed-Frost
model is used primarily for acute infectious diseases. An acute infectious
disease is an infection that appears suddenly and may be of brief or prolonged
duration [1] such as colds, flus and STIs.

We will explore the Reed-Frost model and a couple of example simulations,
before analysing how applicable the model is to real life.

2 Introduction of Concepts

Before looking at the Reed-Frost model a few introductory concepts need to
be explained, namely the different types of epidemiological and statistical
models.

Firstly, from an epidemiology viewpoint, the Reed-Frost model is an
S-I-R epidemic model.

Definition 1 (S-I-R Model). An S-I-R (Susceptible-Infection-Removal) Model
is an epidemiological model that calculates the number of people infected
with a contagious illness in a closed population over time. [2]

The S-I-R format provides the basis of many epidemic models and is
used mainly to model diseases transmitted by humans, where individuals
pass through the following progression of states:

Susceptible to the disease — Infected — Removed (e.g. immunity or death)



The infection can only be passed between two individuals through “adequate
contact”. The concept of “adequate contact” is relative as different infections
are passed in different ways. For example, close proximity to an infected
individual may be sufficient for a common cold to spread but isn’t for an
infection such as an STI. This makes the term “adequate contact” difficult
to define universally and it can be hard to define precisely for a specific
infection (e.g requirements to catch a cold).

For the Reed-Frost model, we consider an acute, infectious disease that
is spread only by “adequate contact”. The model itself comes in two forms:
deterministic form and stochastic form.

Definition 2 (Deterministic Model). A deterministic model is one in which
a given input into the model always produces the same output. [3]

Equivalently, a deterministic model is one where the output is fully
determined by the parameters and initial conditions. For example, in population
dynamics a model that takes some initial population size as its input and
outputs a predicted population size after some interval is a deterministic
model. The lack of randomness within these models makes them relatively
simple to work with, but limits its application to real life. For example, real
populations have random influences affecting growth such as varying birth
and death rates. Therefore, we need to use stochastic processes in order to
create a more realistic model.

Definition 3 (Stochastic Model). A stochastic model is one in which there
is a random element such that for a given input to the model, the outcome
takes a range of possible values. [3]

This means that the outcome is not uniquely determined by the given
input. Therefore, a stochastic model needs to be run multiple times to
generate trends in behaviour.

The stochastic version of the Reed-Frost model that we will be considering
is called an epidemic chain binomial.

Definition 4 (Epidemic Chain Binomial Model). An epidemic chain binomial
model is one in which the number of infected individuals to appear in
the next unit interval of time follows a binomial distribution, with the
probability of infection dependent on the number of infected individuals
in the current time unit. [4]

It is important to note that an epidemic chain binomial model is a
discrete time model and are used to describe the spread of infection within
closed populations, such as households. Therefore, we need to make some
basic assumptions to base the model on.



3 Set-Up for the Model

3.1 Assumptions

There are many factors that can influence the spread of an infectious disease.
Factors can range from simple influences like the movement of individuals
and changes in living standards, to changes as extreme as a natural disaster
or the outbreak of war.”Since there are numerous influences on the spread
of an infection, it is essential that some assumptions are made in order to
create a coherent model.

The Reed-Frost model is based on 5 assumptions [5] :

1. The infection can only be spread via “adequate contact” with infected
individuals.

2. Susceptible individuals become infected after “adequate contact” with
an infected individual in a given time period. They will then only
be infectious for the subsequent time period, before becoming fully
immune.

3. The infection is introduced to a closed population (i.e. the total
population is fixed with no one entering or leaving the pool of individuals).

4. Individuals have a fixed probability of “adequate contact” with any
other individual in a time period

5. The above conditions remain constant for the duration of the epidemic.

It is important to note that the final assumption also includes the requirement
of external factors remaining constant. For example, a war or a famine could
still impact a closed population and thus influence the spread of disease.

Furthermore, the discrete time periods are defined to correspond to the
time between an individual becoming infected and the point at which the
individual is most infectious.

3.2 Notation

In a given time interval ¢, the number of susceptible individuals in the
population is denoted by S; and the number of infected individuals are
denoted by I;. For simplicity, immune individuals are often ignored as they
stay immune for the remainder of the epidemic. The (fixed) probability that
any two individuals come into “adequate contact” in one time frame is p,
which is usually expressed as p = (1 — q).



4 Deterministic Approach

Given the set-up as defined above, the probability that, in a given time
period t, a susceptible individual doesn’t come into contact with a given
individual is 1 —p = q. Therefore, the probability that an individual doesn’t
come into contact with an infectious individual during time period ¢ is (1 —
p)'* = ¢'*. From this, we obtain the probability of a susceptible individual
becoming infected during a time period t:
1- qlt
Now, consider the number of infectious individuals in the time period ¢ 4+ 1.
It is given in the model’s set-up that infected individuals become wholly
immune in the subsequent time period. This implies that I;,1 is independent
of I; and is comprised of the number of susceptible individuals who came
into contact with infectious individuals in time period ¢. From this, we can
calculate the expected number of infectious individuals in time period ¢t 4 1
as:
Iy1 = Si(1—q") (1)

The number of susceptible individuals in time period ¢ 4+ 1 is then simply
the remaining susceptible individuals from the previous time period, which
is clearly:

Sty1 =8t — Ii1q (2)

These two equations form the deterministic Reed-Frost model for initial
conditions (S, I, p). The entire epidemic is then modelled using iterations
of these formulae.

4.1 Examples

Example 4.1. Take a total population made up of 100 susceptible individuals
and 1 infected individual. Let the probability of “adequate contact” be 0.02.

As seen in figure 1, the number of infected individuals peaks at 16
individuals at time ¢ = 6. The number of infected individuals never surpasses
the number of susceptible individuals, leaving 19 susceptible individuals
remaining at the end.

Example 4.2. Take a total population made up of 400 susceptible individuals
and 1 infected individual. Let the probability of “adequate contact” to be
0.04.

From figure 2, we can see that the number of infected individuals exceeds
the number of susceptible people and peaks at a value of 199 at time t =
4. At the end of the epidemic, there are no more susceptible individuals
remaining.
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Figure 1: Deterministic model with ~ Figure 2: Deterministic model with
initial conditions (100, 1,0.02) initial conditions (400, 1,0.04)

5 Stochastic Approach

The stochastic approach to the Reed-Frost model uses the same set-up
defined previously and takes a series of binomial trials to model the epidemic.

As before, the probability of a susceptible individual becoming infected
is:

1-— qlt
However, now the number of infected individuals in the time period ¢ + 1 is
modelled using a binomial distribution with parameters S; and 1 — ¢’ [5].
We denote this as:
Ii+1 ~ Binomial(St, 1 — th)

Therefore, in a given time period ¢t + 1, the probability that there are r
infected individuals is:

Pt =) = () ™ ®)

The number of susceptible individuals in time period ¢ + 1 is simply the
difference between the number of susceptible individuals in time ¢ and the
number of infected individuals in time ¢t 4+ 1. So we have that:

St41 =5 — L1t

These two equations form the stochastic Reed-Frost model for initial conditions
(St, It p)-

The sequence {ly, I1, ..., I;} is called the epidemic chain, where we define
7 =min{t : I;;+1 = 0} to be the time when the infection dies out (i.e. when
there are no more infected individuals). Using this set up, can also calculate
the (expected) final size of the epidemic. [6]



Definition 5 (Final Size of an Epidemic). The final size of an epidemic, T,
is the total number of individuals who became infected during the epidemic.

Therefore, we can see that:
-
T=S)—50=> I
k=1

where 7 = min{t : I;;; = 0}

It should be noted that the final size of the epidemic excludes the number
of individuals who were initially infected.

Whereas I; gives the value of the number of infected individuals in
one time period, T provides a clearer indication of the total number of
individuals who are affected by the infection. Using the above formula,
the probability mass function and expectation for the variable T can be
calculated in order to obtain estimations for the size of an epidemic. !

5.1 Example

Example 5.1. Take a total population made up of 100 susceptible individuals
and 1 infected individual. Let the probability of “adequate contact” to be
0.02. Then our initial conditions are (100, 1,0.02). Figures 3 and 4, seen
below, depict the number of susceptible and infected individuals respectively
when the model was run 100 times, each for 10 time periods.

As seen in figure 3, general trend is for the number of susceptibles to
decrease over time with the time interval of sharpest decline being [3, 6]
and the majority of final values of susceptible individuals lying in the range
[10, 30].

The number of infected individuals tends to be more random. There is
a slight trend in figure 4 of plots increasing when ¢ € [0, 6] and decreasing
when ¢ € [6,11]. However, the number of infected individuals doesn’t exceed
35 in these epidemic chains, with most plots peaking below 25 individuals.

Since the model was only run for 10 time steps, the value of 7 for many
of the epidemic chains wasn’t reached. However, figure 5 shows that the size
of epidemics lay in the range [0, 93] with an average infection size of 64.3.

!The formulation of the probability mass function for T, and thus the expectation of
T, is complex. Therefore, this has been omitted here but can be found in [6].
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Figure 5: Histogram of the final epidemic sizes generated

6 S-I-S Variation

Consider a modified version of the model that simulates epidemics where
there is no immunity, so infected people can become re-infected after recovering.
An example of this is the common cold. This would put the Reed-Frost
model into SIS form (Susceptible-Infective-Susceptible).

This implies that the number of susceptible individuals increases by the
number of recovered individuals:

Sip1 =5 — L1 + 1

However, this assumes that all infectious individuals recover and that they
recover at the same rate.

Instead, let r be the probability an infected individual recovers during
one time interval. Then we have I; infected individuals, each with probability
r of recovering during by time ¢t + 1. Let R; denote the number of newly
recovered individuals time ¢. Then R; ~ Binomial(l;,r).

As before, the number of newly infected individuals is binomially distributed.
Let this be denoted by N;. Then N; ~ Binomial(S;,1 — ¢'t).

Therefore, we have:

Iiyn=1; + Ny — Ry (4)
Si41 =5+ R — Ny (5)

These equations form the SIS variation on Reed-Frost model. 2

2This section was heavily influenced by [7]



7 Analysis of the Model

The main strength of the Reed-Frost model is its simplicity and adaptability.

The simplicity of the model’s formulation means that it can be easily
converted from a deterministic model to a stochastic model. This has meant
the model has been used as an introduction to stochastic epidemic theory.
Yet, despite its simplicity, the model is still relatively complex so requires
approximations in order to be understood and used [8]. Furthermore, the
method “fails to convince those untrained to probability and statistics” [9],
which could cause problems when the model is being used by those from
an epidemiological(rather than statistical) background within public health
bodies.

Although flawed in some areas, the model can be seen as a reasonable
model for outbreaks of contagious illnesses within institutions such as schools.
This is because the assumptions for the model to holds are reasonable for
such situations. For example schools naturally have a closed population and
regular contact. However, it can be argued that the assumptions made are
unrealistic and that the model would be better suited to simulate the spread
of highly contagious diseases.

One of the main strengths of the model is its adaptability to encompass
more realistic assumptions in order to become a more suitable model for
real life applications. This has resulted in the Reed-Frost model being a
template for more complex models, such as the aforementioned SIS model.

We’ve seen that the SIS version of the model assumes that individuals
return to a susceptible state after being infected. Another possible scenario
is one where immunisation is only short term. In this case, immune individuals
are reintroduced into the model as susceptible individuals, thus the model
needs to incorporate the rate at which new susceptible individuals are being
introduced.

Another realistic assumption would be that during the course of an
epidemic, public health measures may be put in place to reduce the rate
of infection, such as restriction of movement [5]. As a result, it would be
expected that p would be reduced and may vary depending on how such
measures change over the duration of the epidemic.

A further assumption which could be considered is that an immunisation
program would be introduced in order to reduce the number of susceptible
individuals and prevent the spread of infection. This would result in some
susceptible individuals moving to an immune state without becoming infected.

All these adaptations would be complex to incorporate within the model
but could improve the accuracy of the predictions generated.

In addition, the model can be extended further to calculate other random
variables such as the duration of infection (previously denoted 7), the final
size of the epidemic (7') and the remaining number of susceptibles. These
variables would be useful to calculate in order for public health measures to



be enforced efficiently and effectively. For example, the expectation of the
final size of an epidemic can be used to predict the number of immunisations
that will be needed.

In conclusion, the Reed-Frost model is a reliable epidemic model for

a specific epidemic scenario that can be easily adapted. Therefore, with
the some aforementioned improvements and extensions, the model can be
applicable to real life.
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Appendix A Matlab Code for Deterministic Simulation

I=zeros (15,1);

)5
2 S=zeros (15,1);

s 1(1)=1;

S(1

)=100;

10
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p=0.02;
q=1-p;

for t=1:15
I(t+1)=S(t)*x(1—q " I(t));
S(t+1)=S(t)-I(t+1);
end

I

S

hold on

plot (S)

plot (I)

xlabel (’Time period t7)

ylabel (’Number of remaining infected and susceptible individuals’)
legend (’S’,’17)

Appendix B Matlab Code for Stochastic Simulation

% simulates the decrease of susceptibles/infected in a population

p= 0.02; % p = prob of contact

q=1-p; % q = probability of no contact

S(1) = 100; % Initial population

I(1) = 1; % Initial number of infected

for j=1:100
A=0; Y%resets the value of A for each run of the model

for k=1:10
I(k+1) = binornd(S(k),1—-q"(I(k)));
S(k+1) = S(k) — I(k+1);
A=A+HT (k+1);
%running count of the number of individuals who become infected

end

plot (I)

hold on

plot (S)

%Note, in practice, these plots are split into 2 graphs

xlabel (’Time period t7)

ylabel (’Number of remaining infected and susceptible individuals’)

legend (’S’,’17)

T(j)=A;

j=i+L

; end

T;

max (T)

min (T)

mean (T)

histogram (T,10) %plots histogram of T split into 10 bins
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