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1 Existence and Uniqueness for IVPs

1.1 Picard’s theorems

This module mainly focuses on examining the behaviour of solutions of initial value problems (IVP), i.e.
problems of the form: {

dx
dt (t) = f(t, x(t))

x(t0) = x0

where x : [t0 − τ, t0 + τ ] → Rn is a differentiable function, f : R × Rn → Rn is a continuous function,
t0 ∈ R, x0 ∈ Rn and τ > 0.

Lemma 1.1. x : [t0− τ, to + τ ]→ Rn satisfies the IVP above if and only if x is continuous and satisfies

x(t) = x0 +

ˆ t

t0

f(s, x(s))ds for all t ∈ [t0 − τ, t0 + τ ].

Theorem 1.2 (Picard’s theorem- global version). Let f : R × Rn be continuous and assume ∃L > 0
such that

|f(s, u)− f(s, v)| ≤ L|u− v| for all s ∈ R and u, v ∈ Rn

(so f is globally Lipschitz). Let τ < 1
L . Then, for all x0 ∈ Rn there is a unique function x : [−τ, τ ]→ Rn

satisfying the IVP {
dx
dt (t) = f(t, x(t))

x(t0) = x0

Example 1.3. We can use this theorem to prove existence and uniqueness of solutions for a system of
linear ODEs. Consider {

dx
dt = Ax

x(0) = x0

where A is an n× n matrix and x0 ∈ Rn. Then:

|Au−Av| = |A(u− v)| ≤ ‖A‖|u− v|

for any u, v ∈ Rn. So, for each choice of x0, by theorem 1.2 the IVP above has a unique solution t 7→ x(t)
defined for t ∈ [−τ, τ ], with τ ≤ 1

‖A‖ .

However, in many cases we have functions that are locally Lipschitz, but not globally Lipschitz. The
following theorem describes the conditions under which we can ensure the existence and uniqueness of a
solution in this case.

Theorem 1.4 (Local Picard’s theorem). Let U ⊂ R × Rn be open, with (0, x0) ∈ U and assume
f : U → Rn is continuous with |f | ≤M and |f(t, u)− f(t, v)| ≤ L|u− v| for all (t, u), (t, v) ∈ U .

Then, there exists a τ ∈
(
0, 1

L

)
and a unique x : [−τ, τ ]→ Rn satisfying dx

dt = f(x, t) and x(0) = x0.

Remark 1.5. This theorem also applies for any other inital time t0 ∈ R.

Picard’s theorem has some important implications:

• If x1 : I1 → Rn and x2 : I2 → Rn are both solutions to the same IVP, then x1(t) ≡ x2(t) for all
t ∈ I1 ∩ I2.

• If the differential equation is autonomous (i.e. the function f does not depend on t), then solutions
cannot cross.
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1.2 Maximal interval of existence

Definition 1.6. The maximal interval of existence J(t0, x0) is the largest interval of t that includes t0
for which the solution x(t) to the IVP ẋ = f(t, x), x(t0) = x0 exists.

Theorem 1.7. Let U ∈ R×Rn be open and f : U → Rn be locally Lipschitz. Then there is a maximal
open interval J = (α, β) with t0 ∈ J such that the IVP{

ẋ = f(t, x)

x(t0) = x0

has a unique solution x : J → Rn

Theorem 1.8 (Unboundedness of solutions). Let U ⊂ R × Rn be open (say U = R × Ũ), and let
f : U → Rn be locally Lipschitz. Let J = (α, β) be the maximal interval of existence of the IVP
ẋ = f(t, x), x(t0) = x0.

If β is finite, then for every compact set K ⊂ Ũ , there is a t ∈ [t0, β] such that x(t) /∈ K. Similarly,
if α is finite then for all compact sets K ⊂ Ũ , there is a t ∈ (α, t0] such that x(t) /∈ K.

From this theorem it follows that:

Corollary 1.9. If β is finite, then either limt→β x(t) does not exist, or limt→β x(t) lies in the boundary

of Ũ .

Remark 1.10. If limt→β x(t) does not exist, we say x(t) blows up in finite time.

When our differential equation is linear, however, we can be sure that finite time blow up does not
happen.

Theorem 1.11. The IVP {
ẋ = A(t)x+ b(t)

x(0) = x0

with A : R→ Rn×n continuous and b : R→ Rn continuous, has a unique solution defined on J = R.

When the maximum interval of existence of an IVP is R, we say that such IVP has a global solution.

2 Linear systems with constant coefficients

In this section we focus on systems of linear differential equations, which can be written as:{
ẋ = Ax

x(0) = x0

where A is a constant n× n matrix and x : R→ Rn.

2.1 Matrix exponentials

We will soon see that such IVP has solution etAx0. But what does it mean to take the exponential of a
matrix?

Definition 2.1. For an n× n matrix, we define etA =
∑∞
k=0

(tA)k

k!

Remark 2.2. The series
∑∞
k=0

(tA)k

k! converges absolutely for any A, so etA is well defined.

Before proving that etAx0 is indeed the unique solution to the IVP, we need some technical lemmas
telling us how to work with matrix exponentials.

Lemma 2.3. Let A,B, T be n× n matrices and T be invertible. Then

• If B = T−1AT then exp(B) = T−1 exp(A)T
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• If AB = BA then exp(A+B) = exp(A) exp(B)

• exp(−A) = (expA)−1

Theorem 2.4. The solution to the IVP {
ẋ = Ax

x(0) = x0

is etAx0.

Proof. It is possible to prove this using the definition of derivative to show that d
dte

tA = AetA = etAA.
Alternatively, using the power series definition of etA:

d

dt

∞∑
n=0

tnAn

n!
x0 =

∞∑
n=1

ntn−1

n!
Anx0

=

∞∑
n=0

tnAn+1

n!
x0

= AetAx0

Moreover, it is easy to see that at t = 0, etAx0 = e0x0 = x0.

In general, it is not easy to compute eAt from the definition. We can instead compute it for a simpler
related matrix and then use lemma 2.3. Recall from Algebra 1 that for every real matrix A, we can find
an invertible matrix T such that AJ := T−1AT is in Jordan normal form. For a matrix AJ in Jordan
normal form, it is possible to calculate (tAJ)k inductively, and consequently to calculate etAJ . Then,
applying lemma 2.3, we have that

exp(tA) = T exp(t(T−1AT ))T−1 = T exp(tAJ)T−1.

2.2 Classification of 2-dimensional linear systems

By studying the eigenvalues of the matrix A in the IVP{
ẋ = Ax

x(0) = x0

it is possible to understand the behaviour of the solutions by drawing a phase portrait and analysing the
stability of the origin. The eigenvalues of a matrix A are given by solving the characteristic equation
λ2 − tr(A)λ+ det(A) = 0 where tr(A) denotes the trace of A (which is the sum of its diagonal entries),
and det(A) its determinant.

Then:

λ± =
tr(A)±

√
(tr(A))2 − 4det(A)

2

are the eigenvalues. Let ∆ := tr(A)2 − 4det(A). If:

• ∆ > 0: we have two real eigenvalues λ, µ. If λ, µ > 0, the origin is an unstable node. If λ, µ < 0,
the origin is a stable node. Otherwise, if the eigenvalues have opposite signs, we say that the origin
is a saddle.

• ∆ < 0: we have two complex conjugate eigenvalues λ, µ. Then the origin is a focus and we say it
is unstable if the real part of the eigenvalues is positive, and stable if it is negative. If the real part
is 0, we say the origin is a centre.

• ∆ = 0: we have one repeated real eigenvalue λ. In this case, we have an improper node, which is
unstable if λ > 0 and stable if λ < 0.
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3 Qualitative theory of ODEs

From now on, we restrict ourselves to autonomous differential equations ẋ = f(x), with f continuously
differentiable (so solutions to the IVP with x(0) = x0 exist and are unique). The state space X will be
Rn most of the time.

3.1 General concepts

We would like to study the behaviour of all solutions of the IVP together, rather than having to analyse
each initial value separately. To this end, we define the flow of ẋ = f(x) to be the map φ : X ×R→ X :
(x0, t) 7→ φt(x0), where φt(x0) is the solution to the initial value problem at time t with initial value x0.

Remark 3.1. This function satisfies φs (φt(x0)) = φs+t(x0) = φt+s(x0).

In order to analyse the qualitative behaviour of ODEs, we need to first set out some definitions.

Definition 3.2. The solutions t 7→ φt(x) are called orbits or trajectories.

Definition 3.3. • The orbit of a point x ∈ X is the set O(x) := {φt(x) : t ∈ R}

• The forward orbit of x is the set O+(x) := {φt(x) : t ≥ 0}

• The backward orbit of x is the set O−(x) := {φt(x) : t ≤ 0}

Definition 3.4. A point x0 ∈ X is a fixed point of ẋ = f(x) if f(x0) = 0

Definition 3.5. A periodic point x is a point such that φT (x) = x for some T > 0 and φt(x) 6= x for
0 < t < T . Equivalently, x is a periodic point if for all t, φt+T (x) = φt(x). Then, O(x) is called a periodic
orbit.

Definition 3.6. Let x be a fixed point. If φt(y) → x as t → ±∞, then O(y) = {φt(y) : −∞ < t < ∞}
is called a homoclinic orbit.

Definition 3.7. Let x0 6= x1 be fixed points. If

φt(y)→

{
x0 as t→∞
x1 as t→ −∞

then O(y) is called a heteroclinic orbit.

Definition 3.8. • A subset Λ ⊂ X is said to be invariant under a flow φ if x ∈ Λ implies φt(x) ∈ Λ
for all t ∈ R.

• Λ ⊂ X is said to be forward invariant under a flow φ if x ∈ Λ implies φt(x) ∈ Λ for all t ≥ 0.

• Λ ⊂ X is said to be backward invariant under a flow φ if x ∈ Λ implies φt(x) ∈ Λ for all t ≤ 0.

Definition 3.9. A point y ∈ X is said to be an ω-limit point of x ∈ X for a flow φ if φtk → y as k →∞ for
some increasing sequence of time tk. The set ω(x) := {y ∈ X : ∃tk →∞ such that φtk(x)→ y as t→∞}
is called the ω-limit set of x.

Similarly, the α− limit set of x is the set of all limit points of the backward orbit of x : α(x) := {y ∈
X : ∃(tk)→ −∞ such that φtk(x)→ y as k →∞}

The omega limit set has some interesting properties.

Proposition 3.10. ω(x) is closed and bounded.

Proposition 3.11. If the forward orbit of a point x ∈ Rn lies in a compact subset K of Rn, then ω(x)
is non-empty and ω(x) ⊂ K.

We now move on to the concept of stability of a set.

Definition 3.12. An invariant set Λ is said to be Lyapunov stable if given any neighbourhood U of Λ
there is a neighbourhood V of Λ such that x ∈ V ⇒ φt(x) ∈ U for all t ≥ 0.
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Informally speaking, this means that ”if we start near, we stay near”.

Definition 3.13. An invariant set Λ is said to be asymptotically stable (or attracting, or attractor), if:

• Λ is Lyapunov stable, and

• there is a neighbourhood V of Λ such that for all x ∈ V, φt(x)→ Λ as t→∞, meaning

d(φt(x),Λ) := inf{d(φt(x), y) : y ∈ Λ} → 0 as t→∞.

Informally speaking, ”start near, stay near and get closer”.

Definition 3.14. An invariant set that is attracting under time reversal is called a repellor or a
repelling set .

However, we may have sets satisfying the second point of definition 3.13 but which are not Lyapunov
stable. For these, sets, we introduce a new definition.

Definition 3.15. An invariant set is said to be eventually attracting if there exists a neighbourhood V
of Λ such that for all x ∈ Λ, φt(x)→ Λ as t→∞.

Definition 3.16. If Λ is an attracting invariant set, then its basin of attraction is defined as

B(Λ) := {x ∈ X : d(φt(x),Λ)→ 0 as t→∞}

If B(Λ) = X, then we say Λ is a global attractor.

In other words, the basin of attraction of an invariant set Λ is the set of all points whose orbits tend
to Λ. B(Λ) is an open set.

Example 3.17. Consider a linear system ẋ = Ax, X = Rn, where A is a constant n× n matrix. If all
the eigenvalues of A have negative real parts, then the origin is a global attractor.

3.2 One-dimensional dynamics

This short section analyses two interesting facts about one dimensional ODEs. Let ẋ = f(x) on X = R,
with f a Lipschitz continuous function. Let φ be its flow, which is well defined since f is Lipschitz.

Proposition 3.18. The orbits of the equation above consists of fixed points, heteroclinic orbits joining
fixed points, and orbits which tend to ±∞ or come from ±∞.

Proposition 3.19. Suppose f 6= 0 on I = (a, b) and f(a) = f(b) = 0. Then, for all x ∈ I, φt(x) is
defined for all t ∈ R and is monotonic. In particular:

• if f > 0 on I, φt(x) is increasing and it tends to b as t→∞, and to a as t→ −∞;

• if f < 0 on I, φt(x) is decreasing and it tends to a as t→∞, and to b as t→ −∞.

3.3 Conservative systems

Definition 3.20. A system ẋ = f(x) is said to be conservative if there exists a non-trivial C1 function
H : X → R that is constant along all orbits, i.e. for all x ∈ X, ddtH(φt(x)) = 0 at t = 0.

By ”non-trivial”, we mean a function H whose derivative is non-zero almost everywhere.

Example 3.21. An important example of a conservative system is the ideal pendulum, represented by
the ODE θ̈ + sinθ = 0, which can be written as a system of two first order equations as follows:{

θ̇ = p

ṗ = −sinθ

This system is conservative with H(x) = p2

2 −cosθ, which represents the energy of the pendulum. Indeed,
we have:

d

dt
H(x(t)) =

∂H

∂p
ṗ+

∂H

∂θ
θ̇ = p(−sinθ) + (sinθ)p = 0.
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Remark 3.22. Finding a function H whose derivative is zero along orbits can be very useful when drawing
phase portraits. In fact, since H is constant along orbits, these must lie inside level sets of H, so analysing
the level sets of H suffices to understand the behaviour of the solutions of the initial value problem.

Definition 3.23. A system of the form {
ẋ = ∂H

∂y (x, y)

ẏ = −∂H∂x (x, y)

where H is a C1 function, is called a Hamiltonian system.

Hamiltonian systems are conservative since

dH

dt
=
∂H

∂x
ẋ+

∂H

∂y
ẏ =

∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x
= 0.

3.4 Lyapunov functions

If there is a function H : X → R which is non-increasing along orbits, this may also be useful for
describing system dynamics.

Definition 3.24. A Lyapunov function for a flow φ : X × R→ X is a continuous function H : X → R
such that for all x ∈ X and t ≥ 0, H(φt(x)) ≤ H(x), i.e. H is non-increasing along orbits.

If H is continuously differentiable, it suffices to check that dH
dt ≤ 0 along orbits.

We now come to a very useful theorem about limit sets.

Theorem 3.25 (La Salle’s invariance principle). If H is a Lyapunov function for a flow φ, then for all
x ∈ X there exists a c ∈ R such that ω(x) ⊂Mc := {y ∈ X : H(φt(y)) = c for all t ≥ 0}.
Remark 3.26. The set Mc := {y ∈ X : H(φt(y)) = c for all t ≥ 0} is the set of all forward orbits along
which H is constant (and equal to c).

This is very useful to find ω− limit sets, especially if you have a Lyapunov function H that is constant
only at the fixed points. In this case, La Salle’s invariance principle would imply that the orbit of any
point in the system tends to one of the fixed points (or to a set of fixed points). We now look at how to
apply this principle to gradient systems.

Definition 3.27. A gradient system is a system of the form ẋ = −∇V (x), where V : X → R is a C2

function.

For such systems, V is a Lyapunov function; you can check that dV
dt = −|∇V (x)|2. Hence, dV

dt < 0,
except at points where ∇V = 0, which are the fixed points. Therefore, La Salle’s invariance principle
implies that for any x ∈ X, ω(x) is a subset of a set of fixed points with the same value of V .

3.5 Dynamics near the fixed points

Sometimes our ODEs can get complicated, making it hard (or even impossible) to find their solutions.
However, in some cases, looking at only the linear terms of the ODEs can be useful to understand the
behaviour of the solutions near a fixed point. This section analyses how and when we can do this.

Consider the ODE ẋ = f(x) on some state space X, where f is continuously differentiable. Let x̄ be
a fixed point of the equation. By Taylor’s theorem

f(x) = f(x̄) +Df(x̄)(x− x̄) +O(|x− x̄|)

where O(|x − x̄|) denotes the non linear (i.e. higher order) terms of the expansion, and f(x̄) = 0,
since x̄ is a fixed point. We introduce a change of coordinates x = x̄+ y, which corresponds to putting
x̄ at the origin. Then:

˙̄x+ ẏ = ẋ = f(x) = Df(x̄)y +O(|y|).

Since O(|y|)
|y| → 0 as y → 0, we can focus our attention on the equation:

ẏ = Df(x̄)y

which is called the linearised dynamics of ẋ = f(x) about the fixed point x̄.
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Definition 3.28. We say a fixed point x̄ is hyperbolic if Re(λ) 6= 0 for each eigenvalue λ of Df(x̄).

We will see that if x̄ is a hyperbolic fixed point, then the local phase portrait near x̄ can be well
approximated by the one of the linearised system.

There are three types of hyperbolic fixed points, depending on the eigenvalues λ of Df(x̄):

• If all eigenvalules of Df(x̄) have Re(λ) < 0, we say x̄ is a sink .

• If all eigenvalues of Df(x̄) have Re(λ) > 0, we say x̄ is a source.

• Otherwise, we say x̄ is a saddle point .

An important property of these fixed points is that sinks are attracting and sources are repelling.
More formally:

Theorem 3.29. Let x̄ be a sink of ẋ = f(x) on X = Rn. Then x̄ is attracting. More precisely, suppose
Re(λ) < −a for some a > 0, for all eigenvalues λ of Df(x̄). Then, there exists a neighbourhood V of x̄
such that:

• φt(x) is defined and in V for all x ∈ V and t ≥ 0;

• There is a Euclidean norm ‖ · ‖B on Rn such that

‖φt(x)− x̄‖B ≤ e−at‖x− x̄‖B

for all x ∈ V , t ≥ 0;

• There is a constant C > 0 such that

|φt(x)− x̄| ≤ Ce−at|x− x̄|

for all x ∈ V and t ≥ 0

where | · | denotes the usual norm on Rn. In particular, φt(x)→ x̄ as t→∞ for all x ∈ V .

By reversing time, if all eigenvalues have real part greater than 0, then x̄ is repelling (defined as
attracting in negative time).

In some circumstances, we can prove that some fixed points that are not sinks are attracting.

Theorem 3.30. (Lyapunov’s first and second stability theorems) Let φ be a continuous flow on X with
fixed point x̄. Let N be a neighbourhood of x̄ and H : X → R be a continuous function which is
non-increasing along orbits in N . Then

• (Lyapunov ′s first stability theorem) x̄ is Lyapunov stable.

• (Lyapunov ′s second stability theorem) if further H is decreasing along orbits in N \ {x̄} then x̄ is
asymptotically stable (attracting).

Example 3.31. Consider ẋ = −x3 on state space R. Use H(x) = x2

2 . Then

dH

dt
=
dH

dx
ẋ = −x4 < 0 for all x 6= 0.

Hence, by Lyapunov’s second stability theorem, the origin is attracting.

We also have a way of checking if a fixed point is unstable.

Theorem 3.32. Let x̄ be a fixed point for ẋ = f(x) on E = Rn, where f is continuously differentiable.
If Df(x̄) has an eigenvalue λ with Re(λ) > 0, then x̄ is unstable.
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We now move onto the stable and unstable manifold theorem. Before starting to analyse it, note that
the definition of manifold is beyond the scope of this module. Since all applications of this theorem will
be done in 1 or 2 dimensions, you only need to remember that one-dimensional manifolds are curves,
and two dimensional manifolds are surfaces.

Let x̄ be a hyperbolic fixed point of ẋ = f(x) on X = Rn, where f is continuously differentiable, and
let

ẋ = Df(x̄)x (1)

be its linearised dynamics on E = Rn.
Denote by Es the subspace of E spanned by the eigenvectors of Df(x̄) associated to the eigenvalues

λ which have Re(λ) < 0. Let ds := dim(Es).
Similarly, denote by Eu the subspace of E spanned by the eigenvectors with real parts greater than

0, and let du := dim(Eu). Each of Es and Eu is invariant under the linearised dynamics. In particular:

Es = {x ∈ E : O+(x)→ 0 under (1)}

is called the stable subspace and

Eu = {x ∈ E : O−(x)→ 0 under (1)}

is called the unstable subspace.

Remark 3.33. The stable subspace is not stable in the Lyapunov sense.

Definition 3.34. The stable manifold W s
x̄ and the unstable manifold Wu

x̄ of the fixed point x̄ are defined
to be the sets:

W s
x̄ = {x ∈ X : φt(x)→ x̄ as t→∞}

Wu
x̄ = {x ∈ X : φt(x)→ x̄ as t→ −∞}

In other words, the stable and unstable manifolds are the non linear equivalent of the stable and
unstable subspaces.

We can now state the theorem.

Theorem 3.35 (Stable and unstable manifold theorem). Let x̄ be a fixed point for ẋ = f(x) on E = Rn.
Let Es = {x ∈ E : O+(x) → 0} and Eu = {x ∈ E : O−(x) → 0} be the stable and unstable subspace
respectively. Then, there exist a stable manifold W s

x̄ of dimension ds and an unstable manifold Wu
x̄ of

dimension du, containing x̄, that are tangent to x̄+ Es and x̄+ Eu, respectively, at x̄.

How can we apply the stable and unstable (SUM) theorem to two dimensional systems?
Suppose our fixed point x̄ is a saddle, and the eigenvalues of ẋ = Df(x̄)x are λ,−µ, where both

λ, µ > 0. Then, the SUM theorem implies that there are precisely two orbits (+ itself) that converge
to x̄ as t → +∞, and they approach tangentially to the stable eigenvector Es (corresponding to the
eigenvalue −µ), one from each side.

Similarly, it also implies that there are precisely two orbits (+itself) that converge to x̄ as t→ −∞,
and they approach tangentially to the unstable eigenvector Eu (corresponding to the eigenvalue λ), one
from each side.

We have seen that near a hyperbolic fixed point, the phase portrait of a system is similar to the one
of its linearised dynamics. What can we say about the relationship between the orbits of such systems?

Theorem 3.36 (Hartman-Grobman’s theorem). Suppose x̄ is a hyperbolic fixed point of ẋ = f(x) on
Rn, with f continously differentiable. Then, there exists a homeomorphism h from a neighbourhood U
of x̄ to a neighbourhood V of 0 ∈ Rn such that h◦φt = ψt ◦h, where φ is the flow associated to ẋ = f(x)
and ψ is the flow associated to its linearisation at x̄, which is ξ̇ = Df(x̄)ξ.

In other words, it is possible to ”match up” orbits of the linearised systems to those of the non-linear
one.

We conclude this section with an important observation: the linearised system is very useful if the
fixed point we are looking at is hyperbolic. However, if the fixed point is non-hyperbolic (i.e. Df(x̄) has
at least one eigenvalue λ with Re(λ) = 0) the non-linear parts of the ODE may give rise to very different
phase portaits, meaning linearised dynamics are not as useful.
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3.6 Global phase portraits

In this section we examine the Lotka-Volterra model, used in population dynamics to analyse the inter-
action between species. Lotka-Volterra models are of the form:{

ẋ = x(A− a1x+ b1y)

ẏ = y(B + b2x− a2y)

where A,B, a1, a2 > 0 are constants, and x, y ≥ 0. Depending on the signs of b1 and b2, these
equations can be used to model different types of interaction:

• bi > 0, i = 1, 2 models a symbiotic relationship, where the interaction between the two species
enhances the growth rate of each population, for example bees and flowers;

• bi < 0, i = 1, 2 models competition between two species for the same resource, for example sheeps
and rabbits competing for grass;

• b1 > 0, b2 < 0 models predator-prey interaction, where x is the predator and y the prey. An
example is sheeps and wolves.

How do we draw the global phase portrait for this type of model?

• Step 1: find the fixed points and their linear stability. To do this, it suffices to set ẋ = ẏ = 0, and
then calculate the eigenvalues of Df(x, y) for each solution (x, y) (see section 3.5).

• Step 2: plot these fixed points on your phase portrait and draw the orbits nearby, whose behaviour
you can deduce from the stability of the fixed points.

• Step 3: ”join the dots” using the fixed points, nullclines (i.e. lines where ẋ = 0 or ẏ = 0) and the
direction of the vector field.

3.7 Periodic orbits

Most of this section will be set in R2, since for some of the following theorems we require the existence
of Jordan curves (i.e. curves that divide the state space into two disjoint pieces).

Theorem 3.37 (Poincaré-Bendixson’s theorem). Let ẋ = f(x) on X = R2, with f continuously differ-
entiable and associated flow φ. If φt(x) ∈ K ⊂ X for all t ≥ 0 with K compact, then either:

• ω(x) contains a fixed point or

• ω(x) is a periodic orbit.

We can use this theorem to prove existence of periodic orbits. If there is a compact forward invariant
region without any fixed points, then the Poincaré-Bendixson theorem implies that ω(x) is a periodic
orbit for each x in the region.

Definition 3.38. A periodic orbit γ such that there is an x /∈ γ with ω(x) = γ or α(x) = γ is called a
limit cycle.

There are also theorems to prove the non-existence of periodic orbits. First, recall the divergence
theorem (covered in multivariable calculus).

Theorem 3.39. (Divergence theorem) Let Γ be a simple closed curve in R2 enclosing a region A; let
f : R2 → R2 and g : R2 → R be continuously differentiable. Then

ˆ
Γ

g (f · n) dl =

¨
A

∇ · (gf) dxdy

where n denotes the outward unit normal vector.

We can use this to prove:
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Theorem 3.40 (Dulac’s criterion). If ẋ = f(x) in R2 and there exists a continuous function g : R2 → R
such that ∇ · (gf) is continuous and non-zero on some simply connected domain D, then no periodic
orbit can lie entirely in D.

Proof. Suppose there is a periodic orbit γ which lies entirely in D. Then, denoting by A the area bounded
by γ: ¨

A

∇ · (gf) dxdy 6= 0

since ∇ · (gf) is continuous and non-zero in D. But f is tangent to γ since γ is a trajectory, so f · n = 0
along γ. Therefore ˆ

γ

g (f · n) dl = 0

which contradicts the divergence theorem.

Remark 3.41. The function g in the theorem above is referred to as a weighing function. Moreover, if
g ≡ 1, this theorem is referred to as the divergence test .

Example 3.42. We now apply this theorem to Lotka-Volterra models from the previous section.{
ẋ = x(A− a1x+ b1y)

ẏ = y(B + b2x− a2y)
where A,B, a1, a2 > 0

We use the weighing function g(x, y) = 1
xy . Then:

gf =

(
1

y
(A− a1x+ b1y),

1

x
(B + b2x− a2y)

)
And

∇ · (gf) = −a1

y
− a2

x
< 0 for all x, y > 0.

Therefore, by Dulac’s criterium, there are no periodic orbits in the positive quadrant.

Remark 3.43. Taking a1, a2 = 0 in the system above gives a modified Lotka-Volterra model which has
cyclic populations.

We now move our attention to Liénard systems. Consider the second order ODE

ẍ+ f(x)ẋ+ g(x) = 0. (2)

We already know how to write this as a system of two first order ODEs by setting y = ẋ. However,
we can do this in another way by introducing the Liénard variable y = ẋ+ F (x), where

F (x) :=

ˆ x

0

f(s)ds.

Then, (2) can be rewritten as {
ẋ = y − F (x)

ẏ = −g(x)

which is referred to as a Liénard system.

Example 3.44. Consider the Van der Pol equation ẍ+β(x2−1)ẋ+x = 0, with β > 0. In the definition

above, we take F (x) = β
(
x3

3 − x
)

and g(x) = x. Then, the equation is transformed to

{
ẋ = y − β

(
x3

3 − x
)

ẏ = −x
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Under some conditions, we can ensure existence and uniqueness of limit cycles (see 3.38) in Liénard’s
systems.

Theorem 3.45 (Liénard’s theorem). Let {
ẋ = y − F (x)

ẏ = −g(x)

be a Liénard’s system.
Let F and g be C1 functions and assume:

• F and g are odd functions (so F (0) = g(0) = 0);

• g′(x) > 0 for all x ∈ R;

• a is the unique positive zero of F and F (x) < 0 for 0 < x < a;

• F increases monotonically for x > a and F (x)→∞ as x→∞.

Then, the Liénard system has a unique and stable limit cycle.
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